

CMake - Cross-Platform Make

R. Douglas Barbieri

Made to Order Software Corporation

Introduction

What is CMake?
 Control the software compilation process using

simple platform-independent and compiler-
independent configuration files

 Generate native makefiles and workspaces that
can be used in the compiler environment of your
choice

 Provides packaging (using CPack) and testing
(using CTest)

Who is using it?

 Linden Lab (for their Second Life project)
 KDE4
 Boost
 MySQL
 The Half-Life 2 SDK
 Rosegarden
 Loads of others (see

http://www.cmake.org/Wiki/CMake_Projects) for
more details

http://www.cmake.org/Wiki/CMake_Projects

Why CMake?

 Better than other build systems:
 Custom GNU/Makefiles
 autoconf/automake
 CodeBlocks other FOSS IDEs (sadly, not DevC++)
 Microsoft Visual Studio and other proprietary IDEs
 Apple XCode

Why CMake (con't)

 Can target multiple compilers, build systems
and IDEs using a single set of configuration
files

 Other build systems are difficult to set up and
debug (particulary autoconf/automake)

 Has a simple to use language to allow
customization for multiple platforms with
relative ease.

 Great even for a single platform!

How Does it Work?

 CMake uses ”Generators” to create your
target build files

 Uses configuration files to target your
particular system

 Uses your custom config or existing rules to
locate and build against third party libraries

 Provides a simple language to help customize
for platform-specific idioms

Generators

 What are CMake Generators?
 They can produce make/project files for many

different IDEs, GNU/Make and Microsoft's Nmake
 Customized for your specific platform
 Able to produce tailored project files specific to

your favorite development IDE or system
 Lots are available!

Generators
GNU/Linux:

$ cmake
 The following generators are available on this platform:
 Unix Makefiles Generates standard UNIX makefiles.
 CodeBlocks - Unix Makefiles Generates CodeBlocks project files.
 Eclipse CDT4 - Unix Makefiles Generates Eclipse CDT 4.0 project files.
 KDevelop3 Generates KDevelop 3 project files.
 KDevelop3 - Unix Makefiles Generates KDevelop 3 project files.

M$ Windows:
C:\ cmake
 Borland Makefiles Generates Borland makefiles.
 MSYS Makefiles Generates MSYS makefiles.
 MinGW Makefiles Generates a make file for use with mingw32-make.
 NMake Makefiles Generates NMake makefiles.
 Unix Makefiles Generates standard UNIX makefiles.

Generators (cont'd)
Visual Studio 6 Generates Visual Studio 6 project files.
Visual Studio 7 Generates Visual Studio .NET 2002 project files.
Visual Studio 7 .NET 2003 Generates Visual Studio .NET 2003 project
 files.
Visual Studio 8 2005 Generates Visual Studio .NET 2005 project files.
Visual Studio 8 2005 Win64 Generates Visual Studio .NET 2005 Win64 project
files.
Visual Studio 9 2008 Generates Visual Studio 9 2008 project files.
Visual Studio 9 2008 Win64 Generates Visual Studio 9 2008 Win64 project files.
Watcom WMake Generates Watcom WMake makefiles.
CodeBlocks - MinGW Makefiles Generates CodeBlocks project files.
CodeBlocks - Unix Makefiles Generates CodeBlocks project files.
Eclipse CDT4 - MinGW Makefiles Generates Eclipse CDT 4.0 project files.
Eclipse CDT4 - NMake Makefiles....

...and etc.

Generators (cont'd)
MacOS/X:

$ cmake
The following generators are available on this platform:

Unix Makefiles Generates standard UNIX makefiles.
Xcode Generate XCode project files.
CodeBlocks - Unix Makefiles Generates CodeBlocks project files.
Eclipse CDT4 - Unix Makefiles Generates Eclipse CDT 4.0 project files.
KDevelop3 Generates KDevelop 3 project files.
KDevelop3 - Unix Makefiles Generates KDevelop 3 project files.

Generators (cont'd)

As you can see....
loads of

GENERATORS!!!!

Configuration Script Syntax
Here is a simple example (CMakeLists.txt):

The name of our project is "HELLO". CMakeLists files in this project can

refer to the root source directory of the project as ${HELLO_SOURCE_DIR} and

to the root binary directory of the project as ${HELLO_BINARY_DIR}.

cmake_minimum_required (VERSION 2.6)

project (HELLO)

Add executable called "helloDemo" that is built from the source files

"demo.cxx" and "demo_b.cxx". The extensions are automatically found.

add_executable (helloDemo demo.cxx demo_b.cxx)

Syntax (cont'd)
Add a library:

add_subdirectory (Hello)

Make sure the compiler can find include files from our Hello library.

include_directories (${HELLO_SOURCE_DIR}/Hello)

Make sure the linker can find the Hello library once it is built.

link_directories (${HELLO_BINARY_DIR}/Hello)

add_executable (helloDemo demo.cxx demo_b.cxx)

Link the executable to the Hello library.

target_link_libraries (helloDemo Hello)

Library Syntax

Library CMakeLists.txt:

Create a library called "Hello" which includes the

 source file "hello.cxx".

Any number of sources could be listed here.

add_library (Hello hello.cxx)

Demo

hello_world

Demo Time!

Demo

 Tutorial
 Step 1 – simple example with a configure file (.in)
 Step 2 – with a user-configurable option
 Step 3 – add install target and tests
 Step 4 – using a macro
 Step 6 – add installer commands
 Step 7 – turn on dashboard scripting

Demo

 SLiteChat – an open-source text chat client
for Second Life (http://www.slitechat.org/)

 Second Life – the official 3D viewer for
Second Life (http://www.secondlife.com/)

Q and A

Ask me questions!
And

Thanks for coming to my talk!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

