

Some MySQL tricks:
an open discussion

Bill Kendrick
CTO, Smashwords, Inc.

Linux Users' Group of Davis
2015-07-20

Preface

● Database (DB) = organized collection of data
● Relational Database Management System

(RDBMS) = DB based on first-order predicate
logic (Edgar F. Codd, 1969), used in
mathematics, philosophy, linguistics, and
computer science.

● Structured Query Language (SQL) =
programming language for managing data in an
RDBMS

Preface (cont'd)

● MySQL ('my s q l', or 'my sequel') = open
source, SQL-based RDBMS, owned/sponsored
by MySQL AB of Sweden, now owned by
Oracle Corp. (It's also the “M” in “LAMP”)
– #2 RDBMS after Oracle

– #1 open source RDBMS

– Initially released 1995

– Linux, Windows, Mac OS X, FreeBSD, Solaris

Preface (cont'd)

● Smashwords, Inc. = self-serve ebook publishing &
distribution platform
– Launched in 2008

– Nearly 360,000 books currently published (6/2015)

– ~150,000 authors; plus small publishers & agents

– ~1.5 million total users, when you add customers & affiliates

– Browse, search & purchase at www.smashwords.com

– Books ship to retailers & subscription services
● Apple iBook Store, Barnes & Noble, Kobo, FlipKart, Scribd,Oyster,

Sony (when they sold ebooks), and more, plus more always coming

You've come a long way, baby

● When I joined (2008), there were < 80 books published
● All services (web, ebook conversion, DB, email) ran on one small

virtual server
● Things would get slow & break now & then

– Growing pains (a good problem to have!)

● Today: load-balanced webservers, formal code review &
deployment processes, automated server provisioning, master &
slave DBs, increased use of “repository” design pattern, unit
testing, and lots more
– Goal: Keep the lights on, and authors & customers happy

– How: Hired people smarter than I

Caveat

● I'm not an expert!
– Things described here may or may not apply to your

problems

– Just here to share some of the interesting things we've
learned along the way (that I can still remember)

– I am not a DBA (database administrator) – can't answer
configuration questions – I still consider myself a SQL
rookie (jack of all trades, master of none?)

● I consider this talk an 'open discussion'; share your
thoughts & experience with the rest of us, too! :)

Problem 1 – Can't ALTER that table

● I want to ALTER a table, but it has so many rows
that it will take a long time

● DB is being accessed all the time by the website;
locking it too long would break things

● Solution 1 – “Site maintenance” downtime
● Solution 2 – Percona Toolkit's “Online Schema

Change” tool: ALTER tables without locking them
– https://www.percona.com/doc/percona-toolkit/2.1/pt-

online-schema-change.html

https://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html

Problem 2 – More columns = bad

● You have users.facebook, users.twitter, now a
new social network comes along. Don't add
columns all over, normalize your data the RDBMS
way!
– CREATE TABLE social_network (

 user_id INT(10) UNSIGNED NOT NULL,
 network_id INT(10) UNSIGNED NOT NULL,
 url VARCHAR(256) NOT NULL DEFAULT '',
 PRIMARY KEY (user_id, network_id));

– But what's “network_id?”...

Problem 2 – More columns = bad
(cont'd)

● Add more networks whenever you want, no need
to ALTER users, or ALTER this new
social_network table to add more VARCHAR
columns!
– CREATE TABLE networks (

 id INT(10) NOT NULL AUTO_INCREMENT,
 name VARCHAR(64) NOT NULL DEFAULT '',
 PRIMARY KEY (id));

– INSERT INTO networks (name) /* id will auto-inc! */
VALUES (“facebook”), (“twitter”), (“friendster”), (“orkut”);

Problem 2 – More columns = bad
(cont'd)

● Add some network URLs for Joe (user id 1234):
– INSERT INTO social_networks

(user_id, network_id, url)
VALUES
(1234 /* Joe */, 2 /* twitter */, “http://www.twitter.com/joe”);

● What networks does Joe use?
– SELECT networks.name, social_networks.url

FROM social_networks
 JOIN networks
 ON networks.id = social_networks.network_id
WHERE social_networks.user_id = 1234 /* Joe */;

Problem 3 – I want history AND fast
results!

● You want a full history of rows for something going back
forever, but usually you're only interested in the latest
one.
– e.g., for each shipment of a book, you want:

“book 123 shipped to retailer 1 on YYYY-MM-DD”

– Under most circumstances, you just want to know what the
latest shipment is of a book to a particular retailer

● or perhaps of all books to a particualr retailer
● or perhaps of one particular book to all retailers

– Sometimes (e.g. for auditing, debugging, customer support,
etc.), you want the entire history (or some subset)

Problem 3 – I want history AND fast
results! (cont'd)

● Create an historical log table
– CREATE TABLE event_log (

 id INT(10) NOT NULL AUTO_INCREMENT,
 object_id INT(10) NOT NULL,
 event_id INT(10) NOT NULL,
 other_stuff VARCHAR(16) NOT NULL DEFAULT '',
 ts TIMESTAMP NOT NULL
 DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY(id));

● Put things in it when stuff happens:
– INSERT INTO event_log (object_id, event_id, other_stuff)

VALUES (123 /* book 123 */, 1 /* shipped to retailer 1 */, “blah”);

Problem 3 – I want history AND fast
results! (cont'd)

● But whenever you do that, also keep track of the latest record in
the log, in a “current” pointer table:
– CREATE TABLE event_current (

 object_id INT(10) NOT NULL,
 event_id INT(10) NOT NULL,
 event_log_id INT(10) NOT NULL,
 PRIMARY KEY (object_id, event_id));

● You definitely want to do both the previous slide's INSERT INTO,
and this slide's REPLACE INTO, within a transaction (atomic!)
– REPLACE INTO event_current

(object_id, event_id, event_log_id)
VALUES
(123, 1, LAST_INSERT_ID());

Problem 3 – I want history AND fast
results! (cont'd)

● Get back the latest only:
– SELECT event_log.*

FROM event_current
 JOIN event_log
 ON event_log.id = event_current.event_log_id
WHERE event_current.object_id = 123
AND event_current.event_id = 1;

● We'll get back the timestamp at the time we logged the event, along with
that “blah” varchar

● Get back full history:
– SELECT * FROM event_log

WHERE object_id = 123 AND event_id = 1;

Problem 4 – Slow queries are slow

● Aside from smarter schema
design, proper use of indexes
(primary keys & otherwise),
sometimes you need more
– Replication database (“slave”)

– Denormalization
● Materialized views (DB tables)
● Dropping JSON into TEXT cols.
● “Baby-step” tables

– Caching

Problem 4 – Slow queries are slow
Part 1 - Replication

● Warning: I don't know how this is done, I've just
benefited from it as “an end user”
– (i.e., as developer writing queries in the application

code)

● If the data you want doens't have to be up-to-the-
millisecond, replicate it onto a server which is not
constantly busy locking rows & tables due to
INSERTs and UPDATEs

● Query that data from the so-called “slave” DB

Problem 4 – Slow queries are slow
Part 2 - Denormalization

● Non-normalized schema; usually bad:
– Users.id = 1

Users.name = “Bob McKenzie”
Users.country = “Canada”
Users.facebook = “http://www.facebook.com/bob/”
Users.twitter = “http://twitter.com/bobmc”

– Users.id = 2
Users.name = “Doug McKenzie”
Users.country= “Canada” .. etc.

– Books.id = 1
Books.AuthorName = “Bob McKenzie” … etc.

– Books.id = 2
Books.AuthorName = “Bob McKenzie” … etc.

– What if Bob changes his penname? :-(

http://www.facebook.com/bob/
http://twitter.com/bobmc

Problem 4 – Slow queries are slow
Part 2 – Denormalization (cont'd)

● Normalized, looks better (but must JOIN tables a lot)
– Users.id = 1

Users.name = “Bob McKenzie”
Users.country_id = 2

– Networks.id = 1
Networks.name = “Facebook” ...etc.

– Social_networks.user_id = 1 /* Bob */
Social_networks.network_id = 1 /* Facebook */
Social_networks.url = “http://www.etc.”

– Books.id = 1
Books.author_id = 1 /* Bob McKenzie */ ...etc.

● Show all books, and their authors' names:
– SELECT books.id, books.title, users.name AS author_name

FROM books JOIN users ON users.id = books.author_id;

http://www/

Problem 4 – Slow queries are slow
Part 2a – Denorm. via Matviews

● Materialized views (matviews) are tables that contain the results of a
query. Example: Yesterday's top 10 selling books
– SELECT sales.book_id, books.title, users.name AS author_name

FROM sales
JOIN books ON books.id = sales.book_id
JOIN users ON users.id = books.author_name
WHERE sales.date =
 DATE_SUB(NOW(), INTERVAL 1 DAY)
GROUP BY sales.book_id
ORDER BY SUM(sales.qty) DESC LIMIT 10;

● Why run that every time someone hits a page?
● We could cache, but cache would expire & we'd likely run it many times

per day.
– We only need to calculate it ONCE, at around midnight! cronjob time!

Problem 4 – Slow queries are slow
Part 2b – Denorm. via JSON

● JavaScript Object Notation (JSON) = lightweight data-interchange
format. It is easy for humans to read and write. It is easy for
machines to parse and generate.
– {

 “book_id”: 1,
 “author”: {
 “name”: “Bob McKenzie”,
 “country”: “Canada”
 },
 “title”: “Mutants of 2051 A.D.: The Novel”,
 “pubdate”: “1983-08-26”,
 “description”: “I was kinda like a one man force eh, like Charlton Heston in Omega Man. Did ya see it? It was a beauty!”,
 “formats”: [
 “epub”: true,
 “pdb”: false
]
}

● Language-independent (not specific to JavaScript). Your PHP, Ruby,
& Go code can all convert the JSON into internal data structures!

Problem 4 – Slow queries are slow
Part 2c – Denorm. via “baby steps”

● Q: What are our top 100 selling books in Romance
category, under Paranormal, Detective and Historical
subcategories, published in the last year, which are part of
a series that has a free series starter (book one), based on
sales in the last 6 months across all retail channels? I
want to make a blog post about them!
– You could write one massive, multi-JOIN query that crashes the

database.

– You could dump a ton of data into tab-separate spreadsheets
and throw it at a script written in the R statistical language

– You can break it into bite-sized pieces (“baby steps”)

Problem 4 – Slow queries; Part 2c –
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category,
under Paranormal, Detective and Historical subcategories,
published in the last year, which are part of a series that has a
free series starter (book one), based on sales in the last 6 months
across all retail channels? I want to make a blog post about them!
– /* Find all books in the categories we care about, pub'd in the last year */

CREATE TABLE analysis.romance_books AS
SELECT book_category.book_id
FROM book_category
JOIN books ON books.id = book_category.id
WHERE book_category.category_id IN (123, 456, 789)
AND books.published = TRUE
AND books.pubdate >= '2014-07-20';

Problem 4 – Slow queries; Part 2c –
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category, under Paranormal,
Detective and Historical subcategories, published in the last year, which are part of a
series that has a free series starter (book one), based on sales in the last 6 months
across all retail channels? I want to make a blog post about them!
– /* For all the books we found, find the series any of them are in */

CREATE TABLE analysis.romance_books_series AS
SELECT DISTINCT(book_series.series_id) AS series_id
FROM analysis.romance_books AS rombook
JOIN book_series ON book_series.book_id = rombook.book_id;

– /* For each series, look at its “book one”; get all series where it's a free book */
CREATE TABLE analysis.romance_books_free_starter_series AS
SELECT romseries.book_series_id
FROM analysis.romance_books_series AS romseries
JOIN book_series AS book1_series
 ON book1_series.series_id = romseries.series_id
 AND book1_series.book_number = 1
JOIN books ON books.id = book1_series.bookid
WHERE books.price = 0.00;

Problem 4 – Slow queries; Part 2c –
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category,
under Paranormal, Detective and Historical subcategories,
published in the last year, which are part of a series that has
a free series starter (book one), based on sales in the last 6
months across all retail channels? I want to make a blog post
about them!
– /* Consider only those which are part of series w/ a free “book one” */

CREATE TABLE analysis.romance_books_eligible AS
SELECT rombook.book_id
FROM analysis.romance_books AS rombook
JOIN book_series ON book_series.book_id = rombook.book_id
JOIN analysis.romance_books_free_starter_series AS fs_series
 ON fs_series.series_id = book_series.series_id;

Problem 4 – Slow queries; Part 2c –
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category,
under Paranormal, Detective and Historical subcategories,
published in the last year, which are part of a series that has a free
series starter (book one), based on sales in the last 6 months
across all retail channels? I want to make a blog post about
them!
– /* Rank the top 100 eligible books */

CREATE TABLE analysis.romance_books_topsellers AS
SELECT rombook.book_id, books.title, SUM(sales.qty) AS qty
FROM analysis.romance_books_eligible AS rombook
JOIN books ON books.id = rombook.book_id
JOIN sales ON sales.book_id = rombook.book_id
 AND sales.date >= '2015-01-20'
ORDER BY SUM(sales.qty) DESC LIMIT 100;

Problem 4 – Slow queries are slow
Part 3 – Caching

● Warning: I'm not versed in setting up backends for this stuff. Again, just an “end user”.
● Memcached = Open source, high-performance, distributed memory object caching

system, generic in nature, but intended for use in speeding up dynamic web applications
by alleviating database load. An in-memory key-value store for small chunks of arbitrary
data (strings, objects) from results of database calls, API calls, or page rendering.

● Set up your memcache, then use it to store results of queries. Run fewer queries, use
your memcache (can be on a separate server!) to store things.

● function get_book_json($bookid) {
 $foo = memcached_get(“book_json:$bookid”);
 if ($foo == NULL) {
 $foo = db_query(“SELECT json_blob FROM book_json WHERE id = $bookid”);
 memcache_set(“book_json:$bookid”, $foo);
 }
 return ($foo);
}

Problem 4 – Slow queries are slow
Part 3 – Caching (cont'd)

● What if it's a slow query? And what if it's on
a popular page?

● Multiple invocations of your code will:
– Check memcache

– Not find anything

– Invoke the slow query

● You're no better off than you were before!
● It becomes a cascading failure:

“cache stampede”

Problem 4 – Slow queries are slow
Part 3 – Caching (cont'd)

● Use a semaphore (“variable or abstract data type that is used for controlling access, by multiple processes, to a
common resource in a concurrent system”) to lock things down while the first process runs the query; other processes
will wait for it to finish.

● function query_with_cache($key, $sql) {
 $lock_key = $key . “_lock”;
 $results = memcached_get($key);
 if ($results == NULL) {
 if (memcached_test($lock_key)) {
 /* Someone else is already running the query, just wait for the results to get saved to cache */
 while (memcached_test($lock_key) && $results == NULL) {
 sleep(1);
 $results = memcached_get($key);
 }
 } else {
 /* I'm the first to notice it's not cached, so create a semaphore, run the query, & save results to cache */
 memcache_set($lock_key, “xxx”);
 $results = db_query($sql);
 memcache_set($key, $results);
 memcache_remove($lock_key);
 }
 return ($results);
}

h/t: http://davedevelopment.co.uk/2012/01/13/defending-against-cache-stampedes.html

http://davedevelopment.co.uk/2012/01/13/defending-against-cache-stampedes.html

Fin

Thanks!

Time to discuss, Q&A, etc.!?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

