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Preface

● Database (DB) = organized collection of data
● Relational Database Management System 

(RDBMS) = DB based on first-order predicate 
logic (Edgar F. Codd, 1969), used in 
mathematics, philosophy, linguistics, and 
computer science.

● Structured Query Language (SQL) = 
programming language for managing data in an 
RDBMS



  

Preface (cont'd)

● MySQL ('my s q l', or 'my sequel') = open 
source, SQL-based RDBMS, owned/sponsored 
by MySQL AB of Sweden, now owned by 
Oracle Corp.  (It's also the “M” in “LAMP”)
– #2 RDBMS after Oracle

– #1 open source RDBMS

– Initially released 1995

– Linux, Windows, Mac OS X, FreeBSD, Solaris



  

Preface (cont'd)

● Smashwords, Inc. = self-serve ebook publishing & 
distribution platform
– Launched in 2008

– Nearly 360,000 books currently published (6/2015)

– ~150,000 authors; plus small publishers & agents

– ~1.5 million total users, when you add customers & affiliates

– Browse, search & purchase at www.smashwords.com 

– Books ship to retailers & subscription services
● Apple iBook Store, Barnes & Noble, Kobo, FlipKart, Scribd,Oyster, 

Sony (when they sold ebooks), and more, plus more always coming



  

You've come a long way, baby

● When I joined (2008), there were < 80 books published
● All services (web, ebook conversion, DB, email) ran on one small 

virtual server
● Things would get slow & break now & then

– Growing pains (a good problem to have!)

● Today: load-balanced webservers, formal code review & 
deployment processes, automated server provisioning, master & 
slave DBs, increased use of “repository” design pattern, unit 
testing, and lots more
– Goal: Keep the lights on, and authors & customers happy

– How: Hired people smarter than I



  

Caveat

● I'm not an expert!
– Things described here may or may not apply to your 

problems

– Just here to share some of the interesting things we've 
learned along the way (that I can still remember)

– I am not a DBA (database administrator) – can't answer 
configuration questions – I still consider myself a SQL 
rookie (jack of all trades, master of none?)

● I consider this talk an 'open discussion'; share your 
thoughts & experience with the rest of us, too! :)



  

Problem 1 – Can't ALTER that table

● I want to ALTER a table, but it has so many rows 
that it will take a long time

● DB is being accessed all the time by the website; 
locking it too long would break things

● Solution 1 – “Site maintenance” downtime
● Solution 2 – Percona Toolkit's “Online Schema 

Change” tool: ALTER tables without locking them
– https://www.percona.com/doc/percona-toolkit/2.1/pt-

online-schema-change.html

https://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html


  

Problem 2 – More columns = bad

● You have users.facebook, users.twitter, now a 
new social network comes along.  Don't add 
columns all over, normalize your data the RDBMS 
way!
– CREATE TABLE social_network (

    user_id INT(10) UNSIGNED NOT NULL,
    network_id INT(10) UNSIGNED NOT NULL,
    url VARCHAR(256) NOT NULL DEFAULT '',
    PRIMARY KEY (user_id, network_id));

– But what's “network_id?”...



  

Problem 2 – More columns = bad 
(cont'd)

● Add more networks whenever you want, no need 
to ALTER users, or ALTER this new 
social_network table to add more VARCHAR 
columns!
– CREATE TABLE networks (

    id INT(10) NOT NULL AUTO_INCREMENT,
    name VARCHAR(64) NOT NULL DEFAULT '',
    PRIMARY KEY (id));

– INSERT INTO networks (name) /* id will auto-inc! */
VALUES (“facebook”), (“twitter”), (“friendster”), (“orkut”);



  

Problem 2 – More columns = bad 
(cont'd)

● Add some network URLs for Joe (user id 1234):
– INSERT INTO social_networks

(user_id, network_id, url)
VALUES
(1234 /* Joe */, 2 /* twitter */, “http://www.twitter.com/joe”);

● What networks does Joe use?
– SELECT networks.name, social_networks.url

FROM social_networks
    JOIN networks
        ON networks.id = social_networks.network_id
WHERE social_networks.user_id = 1234 /* Joe */;



  

Problem 3 – I want history AND fast 
results!

● You want a full history of rows for something going back 
forever, but usually you're only interested in the latest 
one.
– e.g., for each shipment of a book, you want:

“book 123 shipped to retailer 1 on YYYY-MM-DD”

– Under most circumstances, you just want to know what the 
latest shipment is of a book to a particular retailer

● or perhaps of all books to a particualr retailer
● or perhaps of one particular book to all retailers

– Sometimes (e.g. for auditing, debugging, customer support, 
etc.), you want the entire history (or some subset)



  

Problem 3 – I want history AND fast 
results! (cont'd)

● Create an historical log table
– CREATE TABLE event_log (

    id INT(10) NOT NULL AUTO_INCREMENT,
    object_id INT(10) NOT NULL,
    event_id INT(10) NOT NULL,
    other_stuff VARCHAR(16) NOT NULL DEFAULT '',
    ts TIMESTAMP NOT NULL
        DEFAULT CURRENT_TIMESTAMP,
    PRIMARY KEY(id));

● Put things in it when stuff happens:
– INSERT INTO event_log (object_id, event_id, other_stuff)

VALUES (123 /* book 123 */, 1 /* shipped to retailer 1 */, “blah”);



  

Problem 3 – I want history AND fast 
results! (cont'd)

● But whenever you do that, also keep track of the latest record in 
the log, in a “current” pointer table:
– CREATE TABLE event_current (

    object_id INT(10) NOT NULL,
    event_id INT(10) NOT NULL,
    event_log_id INT(10) NOT NULL,
    PRIMARY KEY (object_id, event_id));

● You definitely want to do both the previous slide's INSERT INTO, 
and this slide's REPLACE INTO, within a transaction (atomic!)
– REPLACE INTO event_current

(object_id, event_id, event_log_id)
VALUES
(123, 1, LAST_INSERT_ID());



  

Problem 3 – I want history AND fast 
results! (cont'd)

● Get back the latest only:
– SELECT event_log.*

FROM event_current
    JOIN event_log
        ON event_log.id = event_current.event_log_id
WHERE event_current.object_id = 123
AND event_current.event_id = 1;

● We'll get back the timestamp at the time we logged the event, along with 
that “blah” varchar

● Get back full history:
– SELECT * FROM event_log

WHERE object_id = 123 AND event_id = 1;



  

Problem 4 – Slow queries are slow

● Aside from smarter schema 
design, proper use of indexes 
(primary keys & otherwise), 
sometimes you need more
– Replication database (“slave”)

– Denormalization
● Materialized views (DB tables)
● Dropping JSON into TEXT cols.
● “Baby-step” tables

– Caching



  

Problem 4 – Slow queries are slow
Part 1 - Replication

● Warning: I don't know how this is done, I've just 
benefited from it as “an end user”
– (i.e., as developer writing queries in the application 

code)

● If the data you want doens't have to be up-to-the-
millisecond, replicate it onto a server which is not 
constantly busy locking rows & tables due to 
INSERTs and UPDATEs

● Query that data from the so-called “slave” DB



  

Problem 4 – Slow queries are slow
Part 2 - Denormalization

● Non-normalized schema; usually bad:
– Users.id = 1

Users.name = “Bob McKenzie”
Users.country = “Canada”
Users.facebook = “http://www.facebook.com/bob/”
Users.twitter = “http://twitter.com/bobmc”

– Users.id = 2
Users.name = “Doug McKenzie”
Users.country= “Canada” .. etc.

– Books.id = 1
Books.AuthorName = “Bob McKenzie” … etc.

– Books.id = 2
Books.AuthorName = “Bob McKenzie” … etc.

– What if Bob changes his penname? :-(

http://www.facebook.com/bob/
http://twitter.com/bobmc


  

Problem 4 – Slow queries are slow
Part 2 – Denormalization (cont'd)

● Normalized, looks better (but must JOIN tables a lot)
– Users.id = 1

Users.name = “Bob McKenzie”
Users.country_id = 2

– Networks.id = 1
Networks.name = “Facebook” ...etc.

– Social_networks.user_id = 1 /* Bob */
Social_networks.network_id = 1 /* Facebook */
Social_networks.url = “http://www.etc.”

– Books.id = 1
Books.author_id = 1 /* Bob McKenzie */ ...etc.

● Show all books, and their authors' names:
– SELECT books.id, books.title, users.name AS author_name

FROM books JOIN users ON users.id = books.author_id;

http://www/


  

Problem 4 – Slow queries are slow
Part 2a – Denorm. via Matviews

● Materialized views (matviews) are tables that contain the results of a 
query.  Example: Yesterday's top 10 selling books
– SELECT sales.book_id, books.title, users.name AS author_name

FROM sales
JOIN books ON books.id = sales.book_id
JOIN users ON users.id = books.author_name
WHERE sales.date =
    DATE_SUB(NOW(), INTERVAL 1 DAY)
GROUP BY sales.book_id
ORDER BY SUM(sales.qty) DESC LIMIT 10;

● Why run that every time someone hits a page?
● We could cache, but cache would expire & we'd likely run it many times 

per day.
– We only need to calculate it ONCE, at around midnight! cronjob time!



  

Problem 4 – Slow queries are slow
Part 2b – Denorm. via JSON

● JavaScript Object Notation (JSON) = lightweight data-interchange 
format. It is easy for humans to read and write. It is easy for 
machines to parse and generate.
– {

 “book_id”: 1,
 “author”: {
   “name”: “Bob McKenzie”,
   “country”: “Canada”
 },
 “title”: “Mutants of 2051 A.D.: The Novel”,
 “pubdate”: “1983-08-26”,
 “description”: “I was kinda like a one man force eh, like Charlton Heston in Omega Man. Did ya see it? It was a beauty!”,
 “formats”: [
   “epub”: true,
   “pdb”: false
  ]
}

● Language-independent (not specific to JavaScript).  Your PHP, Ruby, 
& Go code can all convert the JSON into internal data structures!



  

Problem 4 – Slow queries are slow
Part 2c – Denorm. via “baby steps”

● Q: What are our top 100 selling books in Romance 
category, under Paranormal, Detective and Historical 
subcategories, published in the last year, which are part of 
a series that has a free series starter (book one), based on 
sales in the last 6 months across all retail channels?  I 
want to make a blog post about them!
– You could write one massive, multi-JOIN query that crashes the 

database.

– You could dump a ton of data into tab-separate spreadsheets 
and throw it at a script written in the R statistical language

– You can break it into bite-sized pieces (“baby steps”)



  

Problem 4 – Slow queries; Part 2c – 
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category, 
under Paranormal, Detective and Historical subcategories, 
published in the last year, which are part of a series that has a 
free series starter (book one), based on sales in the last 6 months 
across all retail channels?  I want to make a blog post about them!
– /* Find all books in the categories we care about, pub'd in the last year */

CREATE TABLE analysis.romance_books AS
SELECT book_category.book_id
FROM book_category
JOIN books ON books.id = book_category.id
WHERE book_category.category_id IN (123, 456, 789)
AND books.published = TRUE
AND books.pubdate >= '2014-07-20';



  

Problem 4 – Slow queries; Part 2c – 
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category, under Paranormal, 
Detective and Historical subcategories, published in the last year, which are part of a 
series that has a free series starter (book one), based on sales in the last 6 months 
across all retail channels?  I want to make a blog post about them!
– /* For all the books we found, find the series any of them are in */

CREATE TABLE analysis.romance_books_series AS
SELECT DISTINCT(book_series.series_id) AS series_id
FROM analysis.romance_books AS rombook
JOIN book_series ON book_series.book_id = rombook.book_id;

– /* For each series, look at its “book one”; get all series where it's a free book */
CREATE TABLE analysis.romance_books_free_starter_series AS
SELECT romseries.book_series_id
FROM analysis.romance_books_series AS romseries
JOIN book_series AS book1_series
    ON book1_series.series_id = romseries.series_id
    AND book1_series.book_number = 1
JOIN books ON books.id = book1_series.bookid
WHERE books.price = 0.00;



  

Problem 4 – Slow queries; Part 2c – 
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category, 
under Paranormal, Detective and Historical subcategories, 
published in the last year, which are part of a series that has 
a free series starter (book one), based on sales in the last 6 
months across all retail channels?  I want to make a blog post 
about them!
– /* Consider only those which are part of series w/ a free “book one” */

CREATE TABLE analysis.romance_books_eligible AS
SELECT rombook.book_id
FROM analysis.romance_books AS rombook
JOIN book_series ON book_series.book_id = rombook.book_id
JOIN analysis.romance_books_free_starter_series AS fs_series
    ON fs_series.series_id = book_series.series_id;



  

Problem 4 – Slow queries; Part 2c – 
Denorm. via “baby steps” (cont'd)

● Q: What are our top 100 selling books in Romance category, 
under Paranormal, Detective and Historical subcategories, 
published in the last year, which are part of a series that has a free 
series starter (book one), based on sales in the last 6 months 
across all retail channels?  I want to make a blog post about 
them!
– /* Rank the top 100 eligible books */

CREATE TABLE analysis.romance_books_topsellers AS
SELECT rombook.book_id, books.title, SUM(sales.qty) AS qty
FROM analysis.romance_books_eligible AS rombook
JOIN books ON books.id = rombook.book_id
JOIN sales ON sales.book_id = rombook.book_id
    AND sales.date >= '2015-01-20'
ORDER BY SUM(sales.qty) DESC LIMIT 100;



  

Problem 4 – Slow queries are slow
Part 3 – Caching

● Warning: I'm not versed in setting up backends for this stuff. Again, just an “end user”.
● Memcached = Open source, high-performance, distributed memory object caching 

system, generic in nature, but intended for use in speeding up dynamic web applications 
by alleviating database load.  An in-memory key-value store for small chunks of arbitrary 
data (strings, objects) from results of database calls, API calls, or page rendering.

● Set up your memcache, then use it to store results of queries.  Run fewer queries, use 
your memcache (can be on a separate server!) to store things.

● function get_book_json($bookid) {
    $foo = memcached_get(“book_json:$bookid”);
    if ($foo == NULL) {
      $foo = db_query(“SELECT json_blob FROM book_json WHERE id = $bookid”);
      memcache_set(“book_json:$bookid”, $foo);
    }
    return ($foo);
}



  

Problem 4 – Slow queries are slow
Part 3 – Caching (cont'd)

● What if it's a slow query?  And what if it's on 
a popular page?

● Multiple invocations of your code will:
– Check memcache

– Not find anything

– Invoke the slow query

● You're no better off than you were before!
● It becomes a cascading failure:

“cache stampede”



  

Problem 4 – Slow queries are slow
Part 3 – Caching (cont'd)

● Use a semaphore (“variable or abstract data type that is used for controlling access, by multiple processes, to a 
common resource in a concurrent system”) to lock things down while the first process runs the query; other processes 
will wait for it to finish.

● function query_with_cache($key, $sql) {
    $lock_key = $key . “_lock”;
    $results = memcached_get($key);
    if ($results == NULL) {
      if (memcached_test($lock_key)) {
          /* Someone else is already running the query, just wait for the results to get saved to cache */
          while (memcached_test($lock_key) && $results == NULL) {
              sleep(1);
              $results = memcached_get($key);
          }
      } else {
          /* I'm the first to notice it's not cached, so create a semaphore, run the query, & save results to cache */
          memcache_set($lock_key, “xxx”);
          $results = db_query($sql);
          memcache_set($key, $results);
          memcache_remove($lock_key);
    }
    return ($results);
}

h/t: http://davedevelopment.co.uk/2012/01/13/defending-against-cache-stampedes.html

http://davedevelopment.co.uk/2012/01/13/defending-against-cache-stampedes.html


  

Fin

Thanks!

Time to discuss, Q&A, etc.!?
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