
The CRT X-Y Library

Bill Kendrick - libcrtxy

Draw lines, make games.

LUGOD, 9/2008

What Is libcrtxy?

Bill Kendrick - libcrtxy

Specs:
Graphics library on top of libSDL
Draws lines
Doesn't do much more!
Meant to be scalable

Purpose:
Make it easy to (encourage, in fact) write
classic arcade-style vector games

The name:
"X-Y" were a kind of CRT screen in arcade
games. (Plain "libxy" was taken)

LUGOD, 9/2008

Example Classic Games

Bill Kendrick - libcrtxy

Star Wars
Lunar Lander

Asteroids Battlezone
Tempest

* Photos: klov.com

LUGOD, 9/2008

Scalability

Bill Kendrick - libcrtxy

Screen size (obviously)
Should be independent of gameplay

Rendering quality
Alpha-blending
Anti-aliasing
etc.

Encourage game logic portability
Fixed-point math for lines
FPS independence

Backends
SDL bitmap surface
OpenGL *
OpenGL ES *

* Eventually?!

LUGOD, 9/2008

Scalability Screenshot

Bill Kendrick - libcrtxy LUGOD, 9/2008

User-centricity

Bill Kendrick - libcrtxy

User decides backend, rendering quality, etc.
User even decides screen size!

* "User" in this case may also include 'packager' — as in the person
who ports/packages your game for some particular environment, such

as a handheld Linux PDA.

Via configuration files...
libcrtxy - global (/etc/libcrtxy/libcrtxy.conf)
libcrtxy - local (~/.libcrtxyrc)
application - global (/etc/SOMEGAME.conf)
application - local (~/.SOMEGAMErc)

Via libcrtxy environment variables...
CRTXY_ANTIALIAS=OFF, CRTXY_WIDTH=640, CRTXY_HEIGHT=480,
etc.

Via libcrtxy command-line options to application (a la
standard Qt options to KDE apps)

--crtxy-antialias off, --crtxy-width 640, --crtxy-height 480, etc.

LUGOD, 9/2008

Using libcrtxy: Overview

Bill Kendrick - libcrtxy

Compiling with libcrtxy:
gcc mygame.c -c `crtxy-config --cflags`
gcc mygame.o -o mygame `crtxy-config --cflags --libs`

#include "crtxy.h"

int main(int argc, char * argv)
{

XY_fixed n;
XY_options opts; // Struct to store options for
init'ing

XY_default_options(&opts); // Set hard-coded defaults
XY_load_options(&opts); // Read libcrtxy config files
XY_load_options("~/.WHATEVERrc", &opts); // Read our
conf
XY_parse_envvars(&opts); // Abide by env. vars
XY_parse_options(argc, argv, &opts); // Read command-
line

n = 10 << XY_FIXED_SHIFT; // Canvas will be '10x10'
XY_init(&opts, 10, 10); // Init libcrtxy
...

LUGOD, 9/2008

Using libcrtxy: SDL Event Loop

Bill Kendrick - libcrtxy

do
{

XY_start_frame(30); // Max out at ~30fps

while (SDL_PollEvent(&event)) // You just use libSDL...
{

// Deal with all key, mouse, joystick & timer
events.
// (Funcs provided to convert canvas<->screen
coords.)

}

// Move things... (your game logic)
// Draw things... (using libcrtxy drawing funcs.)

XY_end_frame(XY_true); // Max out at ~30fps (see above)
}
while (!done);

XY_end_frame() will delay to prevent going faster than max FPS if given a 'true'
argument, otherwise will SDL_Delay(1) to give OS some time.

Return value of XY_end_frame() can be used (if not throttling) when calculating
how things should move.

LUGOD, 9/2008

Using libcrtxy: Frame Rates

Bill Kendrick - libcrtxy

If throttling FPS via:
XY_start_frame(SOME_FPS);
...
XY_end_frame(XY_true);

then your math can remain simple:
ship_x = ship_x + ship_speed;

All movement may slow down if the system gets bogged down, though.

If running frame-rate-independent via:
XY_start_frame(0);
...
ticks_since = XY_end_frame(XY_false);

then math is affected by how many milliseconds it's been since the last frame
ended:

ship_x = ship_x + (ship_speed * ticks_since) / 100;

In other words, if little time passed since the last frame, don't move things in as
large a step as if more time passed.

LUGOD, 9/2008

Using libcrtxy: Fixed-point math

Bill Kendrick - libcrtxy

Possibly slower than floating-point on systems with FPUs... but I'm actually
more worried about systems without FPUs (handhelds, mobile phones, internet
tablets, etc.)

1 << XY_FIXED_SHIFT is "1.0" in XY_fixed terms.
c = XY_mult(a, b) is "c = a * b"
c = XY_div(a, b) is "c = a / b"

Also:
XY_fpart(3.6) — fractional part ... (0.6)
XY_ipart(3.6) — integer part ... (3.0)
XY_round(3.6) — round up to nearest integer ... (4.0)
XY_rfpart(3.6) — "1 - XY_fpart()" ... (0.4)

And:
XY_cos()
XY_sin()

Lines and points are given in "XY_fixed" fixed-point values, in terms of 'canvas'
size (given to XY_init()). That is then scaled up/down to the actual screen size
(set in the XY_opts by whatever means the user gave it to us — config file, env.
vars, command-line).

LUGOD, 9/2008

Using libcrtxy: Drawing lines

Bill Kendrick - libcrtxy

XY_setcolor(R, G, B, A)
sets color and alpha, returns an XY_color

XY_drawline(x1, y1, x2, y2, color, thickness)
draws a line

XY_drawpoint(x, y, color, thickness)
draws a point

Yeah, that's really all you can do! :^)

* Thickness not yet supported

LUGOD, 9/2008

Using libcrtxy: Line Groups

Bill Kendrick - libcrtxy

Getting a little like OpenGL...

XY_new_lines()
creates a new "XY_lines" and returns pointer to it

XY_add_line(lines, x1, y1, x2, y2, color, thickness)
adds a line to an XY_lines group

XY_draw_lines(lines)
draws them!

XY_start_lines(lines)
removes all lines from an XY_lines group (you can reuse)

Also:
XY_duplicate_lines(lines) — makes a copy, returns ptr. to new
XY_translate_lines(lines, x, y) — translates them by (x,y)
XY_scale_lines(lines, xscale, yscale) — scales them*
XY_rotate_lines(lines, angle) — rotates them*

* Around (0,0) origin

LUGOD, 9/2008

Doxygen for docs - Example

Bill Kendrick - libcrtxy

I'm learning doxygen... bear with me!

Add specially-formatted comments to code to
describe types, functions, their args and their
returns...

/**
 * Duplicates a collection.
 *

 * \param lines is an \ref XY_lines pointer from

 * which you want to copy.
 * \return a pointer to a new \ref XY_lines with all

 * lines from 'lines' copied
 * to it on success, or NULL on failure, and sets

 * error code to one of the
 * following:

 * \li \ref XY_ERR_MEM_CANT_ALLOC

 */

XY_lines * XY_duplicate_lines(XY_lines * lines);

LUGOD, 9/2008

Doxygen for docs - Toil

Bill Kendrick - libcrtxy

Still figuring out best way to generate 100% of the
HTML docs via doxygen.
(Not just API stuff, but discussion of purpose, how to compile and
install lib, how to compile against lib, etc.)

Still figuring out best way to generate sensible man
pages via doxygen.
(e.g. "man XY_init" should Do The Right Thing)

LUGOD, 9/2008

Q & A and Demos

Bill Kendrick - libcrtxy LUGOD, 9/2008

Links

Bill Kendrick - libcrtxy

Home page:
libcrtxy.sourceforge.net

SourceForge project:
www.sourceforge.net/projects/libcrtxy

From the above, get to:
docs, CVS repository, mailing list, etc.

Bill Kendrick:
bill@newbreedsoftware.com

Thanks!

LUGOD, 9/2008

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

