
Introduction

April 21, 2008

CTL
distributed control dispatching framework

by: Alex Honor, Project Leader - Open Source Software Development | ControlTier Inc.

What is CTL?

• New open source software project providing a cross-platform command
dispatching framework for automated distributed management

• Good for system and application administration

• Based on the central concept of a “command dispatcher”

• Familiar script-centric paradigm

• Includes out of the box utilities

• Develop your own modules in multiple scripting languages

• “Value-adding” server applications are in the works that scale CTL

What problems does CTL try to solve?

• Avoid the age-old “looping script” for distributed management. Why?

• Inflexible and cumbersome

• Promotes the “ball of mud” anti-pattern

• Mixes up coordination logic with task-specific procedure

• Usually not rigorously written because they’re seen as temporary solutions

• Hard to scale up

Example looping script pitfalls

• Most of the code has nothing to do with the
task at hand (4 lines to >100)

• Too many hard coded values

• Error management is very rudimentary

• Too much data and code mixed together

• Important data is buried as user variables

• Difficult to flexibly classify sets of hosts

case "$ARG_GROUP" in
 admins)
	 NODES=$ADMINS
	 ;;
 webs)
	 NODES=$WEBS
	 ;;
 all)
	 NODES=$ALL
	 ;;
 *)
	 break
esac

for host in $NODES
do
 if ["$host" = development]
 then
	 sshuser="demo"
 else
	 sshuser=$USER
 fi
 ssh $sshuser@$host curl http://strongbad:8080/webdav/
default/httpd.conf -o /etc/httpd/conf/httpd.conf
 if ["$?" != 0]
 then
	 echo "Error occured while updating httpd.conf
$host"
	 exit 1
 fi
 ssh $sshuser@$host /usr/sbin/apachectl configtest
 if ["$?" != 0]
 then
	 echo "Error occured checking configuration file on
$host"
	 exit 1
 fi
 ssh $sshuser@$host sudo /usr/sbin/apachectl restart
 if ["$?" != 0]
 then
	 echo "Error occured while restarting httpd on $host"
	 exit 1
 fi
 ssh $sshuser@$host /usr/sbin/apachectl status
 if ["$?" != 0]
 then
	 echo "Bad status on $host"
	 exit 1
 fi
done

#!/bin/bash

PROG=`basename $0`
USAGE="
Usage: $PROG -g group
"

check that an option has an argument
arg_syntax_check() {
 ["$1" -lt 2] && syntax_error
}
print USAGE and exit
syntax_error() {
 echo "$USAGE" >&2
 echo "$SYNTAX $*" >&2
 exit 2
}

while ["$#" -gt 0]; do
 OPT="$1"
 case "$OPT" in
 # options with arguments
 -g)
 arg_syntax_check "$#"
 ARG_GROUP="$2"
 shift
 ;;
 --)
 shift
 break
 ;;
 # unknown option
 -?)
 syntax_error
 ;;
 # end of options, just arguments left
 *)
 break
 esac
 shift
done

#
list of admin nodes
ADMINS="strongbad"
#
list of web nodes
WEBS="centos development"
#
list of all nodes
ALL="$WEBS $ADMINS"

#
set the list of nodes to targetSo what’s the alternative?

http://strongbad:8080/webdav/default/httpd.conf
http://strongbad:8080/webdav/default/httpd.conf

What is Dispatching?

• Takes a command and invokes it
locally or remotely and optionally,
in parallel

• Network abstraction provided via
“node dispatch”

• Centralized configuration
maintains metadata profiles of
nodes and deployments

• Two kinds of command dispatching available

• Ad-hoc commands: Anything you normally type at the shell

• Defined commands: Commands saved into a library called a module

How about some examples?

• Usage: ctl-exec [args] [-- command]

• Check if http is running on all machines

• ctl-exec -- ps | grep httpd

• Use filtering keywords to target specific hosts

• -I (inclusion), -X (exclusion)

• keywords: hostname, os-name, os-family, os-version, os-arch, tags

• Use -threadcount and -keepgoing flags to run across large numbers

• Without command, the matching nodes are listed

Execute ad-hoc commands via “ctl-exec”

Why is that cool?

ctl-exec lets you run ad-hoc commands through “command dispatching”

ctl-exec separates dispatch from task specific procedure

Node dispatching provides a level of network abstraction

Defaults to sequencing but threading allows you to run commands in parallel

Node metadata provides a flexible set of keywords to target actions

Consider ctl-exec the next time you’re about to write
a looping script.

Under the hood

• Based on Java (currently testing 1.5 but
eventually support 1.4 and above)

• Remote invocation done over SSH2 via
JSch (Java Secure Channel)

• Apache Bean Scripting Framework and Ant
provide support for multiple implementation
languages

• Can be embedded in your existing
management frameworks or write scripts
around CTL

CTL API
command dispatcher

Java

modules

CTL, 3rd party tasks

Ant
BSF

CTL clients

JSch

CTL Software architecture:

• Extract the tgz/zip archive

• Run ctl-setup

• Optional: Centralized web repository. Any HTTP server will do, but
WebDAV is pretty cool

Deploying CTL

• Passive (sshd is the active process)

• Add admin host SSH public key to target hosts authorized_keys

• Does not require root (in fact that’s discouraged)

• Java Installed. 1.5 (soon 1.4+)

1

2

3

Assumptions we make

Installation

More examples with ctl-exec

• Step 1: Push the config

• ctl-exec -I tags=web -- curl http://strongbad/webdav/default/httpd.conf

• Step 2: Test the config

• ctl-exec -I tags=web -- apachectl configtest

• Step 3: Restart the httpd

• ctl-exec -I tags=web -- sudo apachectl restart

• Step 4: Check the process

• ctl-exec -I tags=web -- apachectl status

Scenario: Sync the apache configuration

http://strongbad/webdav/default/httpd.conf
http://strongbad/webdav/default/httpd.conf

Roadmap for ctl-exec

• Features in the next release (all from user feedback)

• here documents. Create multi-line scripts

• -s,--scriptfile.

• -q,--quiet mode. Show only error messages.

• -R,--retry flag. Like -K,--keepgoing except it will cycle back and retry hosts
where command failed

• report generation

• Your suggestions here!

ctl-exec -I tags=web -stdin <<END
 statement 1
 statement 2
 ...
 statement 3
ENDctl-exec -s myscript.sh

Defined Commands

Define and execute commands in a module

What problems do defined commands solve?

• Lack of standardized function library for critical operational tasks

• Huge monolithic scripts that are inflexible, hard to debug and do not lend
themselves to unit testing!

• Uncontrolled packaging, versioning and distribution of important automation
code.

• Weak or non-existent security model

• Missing or inconsistent data model to drive automation code

• A full featured framework that supports script writers to develop, deploy and
operate online service environments

Defined commands

• CTL allows you to take your existing script code and save it as a defined
command in a library called a module.

• These commands then become exposed to the CTL framework and available
to the command dispatcher.

• The command dispatcher can then invoke your commands with network
abstraction via node dispatch

• You can define a data model to drive your commands

• Other framework benefits include advanced features like object-orientation
features, access control and reporting

How about some examples?

• Usage: ctl -m module -c command [-- [args]]

• The “-X” and “-I” flags turn on node dispatching

• Check if http is running on all machines except strongbad

• ctl -X strongbad -m shellutil -c ps -- -pname httpd

• Check if sshd is running on all Linux machines (sshd already assumed)

• ctl -I os-name=Linux -m shellutil -c ps -- -pname sshd

• Without “-c command” the matching commands are listed

Defined commands run via “ctl”

Why is that cool?

No more monolithic large and unweildly scripts. They decompose to modular
functions available for reuse

Node dispatching provides network abstraction, sequencing or concurrency
to all your procedures

CTL modules lets you hide command implementations, combine them into
sequences and allows you to mix scripting languages.

CTL provides a standard way of packaging, distributing, deploying and
executing new modules.

Under the hood

• Framework takes command request,

• resolves it to a “handler”,

• creates a data binding “context”,

• and dispatches control to the handler

• Your command interfaces a tool or
encapsulates your own procedure

& parameters

binds

How module dispatching works:

Out of the box utilities

• “coreutils” Cross platform utilities inspired by the GNU coreutils.

• fileutil, netutil, shellutil, textutil

• ProjectBuilder

• Development tool for defining new CTL controller modules

• Ant tasks and Maven plugin

• Enables Java build life cycle to extend into deployment and operation!

coreutils base
ant

tasks
maven
plugin

Time for more examples...

• Scenario: You need to push out a new version of Apache httpd.conf, restart
the httpd processes and then check their status

• Assumption: You want to do this centrally

• You’ll maintain httpd.conf files in a central repository

• You have multiple nodes with Apache deployments

• Based on the ad hoc commands shown earlier with ctl-exec

• Capture them as “defined commands” and run via ctl

Defining new controller modules is simple

• Controller modules are defined in an XML file

• Contains a set of command and attribute definitions

• Controller modules are built via ProjectBuilder utility

• reads XML file and generates a software artifact installable in CTL

type.xml xml and

properties

Text

Editor

Project

Builder

controller module
software artifacts

syntax errors

runtime errors

1 2

3

CTL

Dispatcher

The “type.xml”

• Defines commands

• Choose your command type and
plug in your implementation

• Define any needed options

• Defines attributes

• Creates a data model for your
command

• Use it to default your command
parameters

<type name=”apacheutil”>
 <attributes>
 <attribute-default
 name=”port” value=”80”/>
 </attributes>
 <commands>
 <command name=”status”>
 <execution-string>sh</execution-string>
 <argument-string>
 netstat -an | grep ${opts.port}
 </argument-string>
 <opts>
 <opt parameter=”port” type=”string”
 property=”opts.port”
 defaultproperty=”entity.attribute.port”/>
 </opts>
 </command>
 </command>
</type>

ctl -m apacheutil -c status -- -port 80

Example: Define commands in a module

• Step 1: Create and edit

• ctl -m ProjectBuilder -c create-type -- -type apacheutil

• Step 2: Build and deploy it

• edit deployments.properties

• ctl -m ProjectBuilder -c build-type -- -type apacheutil -deploy

• Step 3: Run it

• ctl -m apacheutil -c status

Goal: Create a module that defines apache utility commands

Use the right language for the job at hand

• CTL supports several kinds of command handlers:

• Bean Shell Framework: python, ruby, javascript, groovy, and others

• Shell: Unix shells, Windows .bat, Perl

• Ant: Ant tasks and types

• Workflows: Define sequences of commands (or other workflows) along
with success and error handling, notification and reporting

• Or reuse defined commands from “coreutils” library (and eventually reuse
your own)

Runbook (generated docs)

• Your “type.xml” file is used to
generate web documentation

• Gives usage info for your
commands

• Great for handing off to others

• Always current with your modules

• Based on Apache Forrest

Distribute your module

• Declare deployments in the deployments.properties file

• maps modules to nodes

• used by nodedispatch in “ctl”

• Use ctl-depot to deploy modules

• ctl-exec -- ctl-depot -D

Example: sync’ing the Apache configuration

• Synchronize the configuration file

• ctl -I tags=web -m apacheutil -c configget

• Test the configurations

• ctl -I tags=web -m apacheutil -c configtest

• Restart the httpd processes

• ctl -I tags=web -m apacheutil -c restart

• Check status:

• ctl -I tags=web -m apacheutil -c status

Use “apacheutil” to run the defined commands

Each command encapsulates its implementations and presents itself for
future reuse.

Workflows: Command sequences

• Workflows call a sequence of
previously defined commands.

• Can run command sequences in
multiple threads

• The error handling options:

• run another command

• fail

• report

• prompt the user

• email

 <command name="sync-config"
 description="sync and restart httpd"

 command-type="WorkflowCommand"
 is-static="true"

 error-handler-type="FAIL"

 >

 <workflow threadcount="1">

 <command name="configget"/>

 <command name="configtest"/>

 <command name="restart"/>

 <command name="status"/>

 </workflow>
 </command>

Example: Config syncing via the workflow

• Run the syn-config command

• ctl -I tags=web -m apacheutil -c sync-config

The “sync-config” workflow is itself a command that can be used
within another workflow.

Server applications

Lets you scale CTL

“Value-adding*” server applications in the works

• Jobcenter: Scheduled command execution:

• Reportcenter: Logging and reporting of commands:

• Design Workbench: Integrated model of all controller definitions:

* All these applications are also open-source

Jobcenter: Web-based self service

• Exposes defined commands as “jobs”

• Jobs can be

• scheduled to run repeatedly,

• saved or

• run and forgotten.

Reportcenter: Centralized Reporting

• Adds logging and auditing capability
to CTL

• Good for keeping track of activity in
larger CTL environments

• Based on Log4J. Has a listener that
receives logging requests with
populated MDC fields

• Being made open ended to support
many kinds of “report activities”

Parting thoughts

• CTL built on the idea of a dispatcher that supports network abstraction and
concurrency

• Dispatcher simplifies your scripts by separating centralized dispatching logic
from task-specific procedure

• Introduces node and deployment metadata that can be used as filtering
keywords and as a standard method to target actions

• Supports ad-hoc and defined commands. Defining commands is simple and
can be done in any mixture of scripting languages.

• Several enterprise class server apps on the way to help you use CTL in large
scale environments.

• This is a new project so your feedback is welcomed and encouraged!

Resources

CTL
distributed control dispatching framework

Documentation
http://ctl.controltier.com

Comments and questions on Google Group
http://groups.google.com/group/controltier

http://ctl.controltier.com
http://ctl.controltier.com
http://groups.google.com/group/controltier
http://groups.google.com/group/controltier

